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A NOTE ON EXPLICIT SOLUTIONS OF CERTAIN
IMPULSIVE FRACTIONAL DIFFERENTIAL
EQUATIONS

Namiip Koo*

ABSTRACT. This paper deals with linear impulsive differential equa-
tions involving the Caputo fractional derivative. We provide exact
solutions of nonhomogeneous linear impulsive fractional differential
equations with constant coefficients by means of the Mittag-Leffler
functions.

1. Introduction and preliminaries

Denton and Vatsala [5] established the explicit representation of the
solution of the linear fractional differential equation with variable co-
efficients and they developed the Gronwall integral inequality for the
Riemann-Liouville fractional differential equations. Choi et al. [1] ob-
tained an exact solution of linear Caputo fractional differential equations
by the help of the Mittag-Leffler functions. Also, Choi et al. [2] studied
the stability for Caputo fractional differential equations. Feckan et al.
[6] studied a Cauchy problem for a fractional differential equation with
linear impulsive conditions and made a counterexample to illustrate that
the concepts of piecewise continuous solutions used in current papers are
not appropriate. Wang et al. [10] obtained many new existence, unique-
ness and data dependence results of solutions for nonlinear impulsive
fractional differential equations involving the Caputo fractional deriva-
tive via some generalized singular Gronwall inequalities. Choi and Koo
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[3, 4] obtained exact solutions for linear impulsive fractional differen-
tial equations with constant coefficients by means of the Mittag-Leffler
functions.

In this paper we provide exact solutions of nonhomogeneous linear
impulsive fractional differential equations with constant coefficients by
means of the Mittag-Leffler functions.

We recall the notion of Mittag-Leffler functions which were originally
introduced by G. M. Mittag-Leffler(see [9]). That is, one parameter
family Mittag-Leffler function is given by

00 tqk
E,(t7) = kzow q>0
and two parameter family Mittag-Leffler function is defined as
oo tqk
Eqr(t?) = ;) Tk +7) q,r >0,

where I' is the Gamma function given by
o0
I'(2) :/ e 't*71dt, Re(z) > 0.
0

The Mittag-Leffler functions which are the generalizations of the ex-
ponential function play an important role in the theory of fractional
differential equations.

Let g be a positive real number such that 0 < ¢ < 1 and to, T € [0, 00).
We recall the definition of the Caputo fractional derivative of a function
w: [tg,00) — R.

DEFINITION 1.1. [7] The Caputo fractional derivative of order q of a
function w is defined by

“Diu(t) = P(ll—q)/to (t — s)"%/(s)ds,

where u/(t) = dqfi(tt).

For the fractional calculus and the theory of fractional differential
equations, we refer the reader to [7].

Throughout this paper, let J = [tg,T]. Assume that {t;}}", satisfies
0<t)y <t < <ty <tmyr =T, ult)) = lim,_ o+ u(ty +¢) and
u(t, ) = lim__o- u(ty + €) represent the right and left limits of () at
t = tx. Denote by C(J,R) the set of all continuous functions from J
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into R. Also, let PC(J,R) be the set of all functions from J into R as
follows:
PC(J,R) ={u:J — Rlu e C((tg, tk41],R),k=0,1,--- ,m, and
there exist u(t; ) and u(t), k=1, -+ ,m, with u(t;) = u(ty)}.
We consider the following fractional Cauchy problem
DI u(t) = f(t,u(t)),t # tp,t € J,
u(to) =ug € R,
where f: J x R — R is jointly continuous, Au(ty) = u(t;) —u(t;), and
I, : R — R. For the concept and existence of solution for Eq. (1.1),

see [6, 10]. Also, for the general theory and applications of impulsive
differential equations, we refer the reader to [8].

2. Main results

In this section we give exact solutions of nonhomogeneous linear im-
pulsive fractional differential equations with constant coefficients by the
means of the Mittag-Leffler functions.

LEMMA 2.1. [10] Let a be a real number with a > ty. Then a function
u € C(J,R) is a solution of the following fractional Cauchy problem

{CthOu(t) = f(t,u(t),t € J, (2.1)
u(a) = ug

if and only if it is a solution of the following fractional integral equation

u(t) = uo—r(lq)/t:(a—s)q1f(s,u(s))d8
b t — 8)7 (s, u(s))ds
" F(q)/m(t )11 £ (s, u(s))ds.

LEMMA 2.2. [10] A function v € PC(J,R) is a solution of the follow-
ing fractional integral equation

(w(to) + w5 Jin (t = )71 f (s, u(s))ds, t € [to, 1],

“W=Nute)+ Y Llulty))

f0<tk<t
+ﬁ fto(t — )77 f(s,u(s))ds,t € (tg, tpr1), k=1, ,m,
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if and only if it is a solution of Eq. (1.1).

Next, we consider the nonhomogeneous linear differential equation
involving the Caputo fractional derivative

“Df x(t) = Az (t) + h(t), z(to) = o, (2.2)

where z,h € C(J,R) are continuous. Then the unique solution z(t) of
Eq. (2.2) satisfies the following integral equation

z(t) = x(to) Eq(A(t — to)?) + /t (t— s)qflE%q()\(t —s))h(s)ds (2.3)
for t > tg.

LEMMA 2.3. [1, Lemma 3.2] If we set h(t) = d in Eq. (2.2) with a
constant d, then the solution z(t) of Eq. (2.3) reduces to

.’L’(t) = (L‘(to)Eq(A(t — to)q) + d(t — to)qEq7q+1()\(t — to)q), teJ

REMARK 2.4. If we set h(t) = d in Eq. (2.2) involving the Caputo
fractional derivative of the order ¢ = 1, then the solution z(t) of of Eq.
(2.3) reduces to

l‘(t) = :E(to)El ()\(f — to)) -|— d(t — tO)ELQ()\(t — to))
ek(t_to):n(to) + %(e”t—t“) —1), teJ,
where )\ is nonzero constant.

We can obtain the following result about exact solutions of nonhomo-
geneous linear impulsive fractional differential equations with constant
coefficients by the help of the Mittag-Leffler functions. This result is an
improvement of Theorem 2.4 in [3].

THEOREM 2.5. If we set f(t,u) = Au + d with constants \,d and
I (u(ty)) = Bru(ty ),k =1,2,--- ,m, with each constant 3} in Eq. (1.1),
then the solution u(t) of Eq. (1.1) is given by
uoEq(A(t —10)7) + d(t — t0)?Eq g1 (At — t0)?)), T € [to, 1],

o By(A(t — t)?) TTi 1(1+ﬁ2) g(A(ti —ti1)7)

u(t) = § +dE (At —t,)?)) Z —1(tj —tj-1) B q+1(A(t; — tj—1)7)x
T (U + B)) T 1 BNt — tim1))
+d(t = tk)1Eqqr1(A(t — tx)7), t € (tr, tisal,

where k =1,2,--- ,m and Hf:kﬂ EqA\tr+1—1t,)?) =1.
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Proof. Let t € [to,t1]. Then it follows from Lemma 2.3 that
U(t) == ’LL[)Eq()\(t — to)q) + d(t - tg)qEq7q+1()\(t - t[))q), te [to, tl].
If t € (t1,t2], then we obtain

u(t) = (1+Bulty)Eg(AMt —t)T) +d(t — 1) Eqqr1 (At — t1)7)
= uo(l+ B1)Eg(A(t1 — to)?) Eq(A(t — t1)?)
+ (14 B)d(ts — t0) Eqg+1(A(t1 — t0)?) Eq(A(t — t1)7)
+ d(t — tl)qEq q+1(/\(t — tl)q) te (tl, tQ].
If t € (t9,t3], then we obtain
u(t) = (14 B2)ulty)Eg(A(t —t2)?) + d(t — t2)"Eq g1 (At — t2)7)
= uo(1+ B1)(1+ B2)Eq(A(tr — t0)?) Eq(A(t2 — t1)7) Eq(A(t — t2)*
+ (L4 B) A+ Ba)d(ty — to)* Eqq+1 (At —t0)?) Eq(At2 — 11)7) X
Eq(Mt = t2)7) + (1 + B2)d(tz — t1)?Eq q41(AMt2 — t1)) Eq(A(t — t2))
+ d(t —t2) Eqq41(A(t —£2)9), t € (t2,13].
Let t € (tg,tr+1]. Then it follows from above similar argument that

u(t) = (1 + Br)ulty ) Eq(A(E —t,)?) + d(t — tk) Eq,q11 (At — tx)?)

k
=ug | | (1+Bi)Eq(A(ti — ti1)?) Eq(A(t —x)?)
=1

k
L+ Bi)d(ty — t0)Eq,q+1(A(t1 — t0)?) H Eq(A(ti = tim1)?) Eq(A(t — tk)7)

k
it
i=1 =2
k k
+ 1+ 8)d(t: — 1) By g1 (Ata — 1)) [ oAt — tio1)) By (At — t)%)

=2 =3

k
+-+ H L+ Bi)d(tk—1 — th—2)"Eq g+1(A(tp—1 — tp—2) ¥
i—h—

% 1

k

T 20t = ) BN = 0

k
H (1+ Bi)d(tr — th—1)"Eqqr1(A(tr — th—1) Eg(A(t — 1))
+d(t - tk)qEq,q+1(>‘(t - tk)q)» le (tkv tk+1]7
where k = 1,--- ,m. This completes the proof. O

In view of Theorem 2.5, we can obtain the following result in [4, Theorem
3.4].
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COROLLARY 2.6. If f(t,u) = Au and I} (u(t,)) = Bru(t, ) with con-
stants A and [y in Eq. (1.1) for k =1,--- ,m, then the solution u(t) of
Eq. (1.1) reduces to

= UOEq()\(t — to)q),t S [to,tl],
uo [T [+ B) Byt — ti-) DI Bg(A(E — 1)), € (ta,tiora],

where k =1,--- ,m.

(2.4)

REMARK 2.7. In addition to the assumptions of Eq. (1.1), assume
that {t,}3° satisfies 0 <tg < t; <--- <ty <--- and limy_,o t, = +00.
Then we can extend Theorem 2.5 and Corollary 2.6 to case of Eq. (1.1)
with J = [tg,00) and {tx}32,.
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